STUDY OF RELATIVE CONNECTEDNESS AND QUASI NORMAL REGULARITY IN BITOPOLOGICAL SPACES.

Dr. Govind Kumar Singh & Dr. Mukund Kumar Singh

ABSTRACT

Our main aim is to derive the topological connectedness of strongly regular (WS-superregular, superregular) topological space (Y, τ') in X if and only if for each point $x \in Y$ and any neighborhood $U'(x) \in \tau'$ (respectively, $U(x) \in \tau$) there is a neighborhood $V(x) \in \tau$ (respectively, $V'(x) \in \tau'$, $V(x) \in \tau$) such that $\tau \operatorname{cl} V(x) \cap Y \subset U'(x)$ (respectively, τ $\operatorname{cl} V'(x) \subset U(x), \tau \operatorname{cl} V(x) \subset U(x)$).

Keywords: - topological, bitopological, compactness, connectedness normal, topological subspace, WS-supernormal,

Introduction

The bitopological properties and their topological counterparts are related with their respective counterparts which are clarified. We use the notations are (i) : TS for a topological space, (ii) TsS for a topological subspace, (iii) BS for a bitopological space and BsS for a bitopological subspace. $I, j \in \{1, 2\}, I \neq j$. We discuss the properties of relative separation axioms and relative connectedness, in particular, some relative versions of p-T₀, p-T₁, p-T₂, (I, j)- and p- regularities, (I,j)- and p-complete regularities, p-real normality and p-normality. Moreover, relative properties of (I, j)- and p- compactness types, including relative versions of (I, j)- and p-para-compactness, (I, j) and p-Lindelofness, (I, j)- and p-pseudo compactness are of great importance.

Theorem

Let (Y, τ_1, τ_2) be a BsS of a BS (X, τ_1, τ_2) . Then

i Y is (*i*, *j*)-strongly regular in X if and only if for each point $x \in Y$ and any neighbourhood $U'(x)\tau'_2$ there is a neighborhood $V(x) \in \tau_i$ such that $\tau_j \operatorname{clV}(x) \cap Y \subset U'(x)$.

ii Y is (i, j)-WS-superregular in X if and only if for each point $x \in$ Y and each neighborhood $U(x) \in \tau_i$ there is a neighbourhood $V'(x) \in$ τ'_i such that $\tau_j \operatorname{cl} V'(x) \subset U(x)$.

iii is (i, j)-superregular in X if and only if for each point $x \in Y$ and each neighborhood $U(x) \in \tau_i$ there is a neighborhood $V(x) \in \tau_i$ such that $\tau_j \operatorname{cl} V(x) \subset U(x)$.

Proof

we first prove (i) Let us consider, *Y* to be (i, j)-strongly regular in *X*, $x \in Y$ and $U'(x) \in \tau'_i$. Then $x \in A = Y \setminus U'(x)$, $A \in \operatorname{co} \tau'_i$. Hence, there are $V(x) \in \tau_i$, $V(A) \in \tau_j$ such that $\tau_j \operatorname{cl} V(x) \cap V(A) = \emptyset$,

$$\tau_j \operatorname{cl} V(x) \subset X \setminus V(A) \subset X \setminus A = X \setminus (Y \setminus U'(x)) = U'(x) \cup (X \setminus Y) \dots$$

and thus $\tau_j \operatorname{cl} V(x) \cap Y \subset U'(x)$.

Conversely, if the condition is satisfied, $x \in Y$, $A \in co\tau_i$ and $x \in A$. Then $x \in Y \setminus A = U'(x) \in \tau_i$ and hence, there is $V(x) \in \tau_i$ such that τ_j $clV(x) \cap Y \subset U'(x)$. Therefore, we obtain the following relations.

 $X \setminus U'(x) \subset X \setminus (\tau_j \operatorname{cl} V(x) \cap Y) = (X \setminus \tau_j \operatorname{cl} V(x)) \cup (X \setminus Y) \text{ so that } (X \setminus U'(x)) \cap Y \subset X \setminus \tau_j \operatorname{cl} V(x). \text{ Thus } A \subset X \setminus \tau_j \operatorname{cl} V(x) = V(A) \in \tau_j \text{ and } V$ $(x) \cap V(A) = \emptyset.$

We now prove (ii) Let be (i, j)-WS-superregular in $X, x \in Y$ and $U(x) \in \tau_i$. Then $x \in F = X \setminus U(x) \in \operatorname{cot}_i$ and so, there are $V(x) \in \tau_i', V(F) \in \tau_j$ such that $\tau_j \operatorname{cl} V(x) \cap V(F) = \emptyset$. Therefore, $\tau_j \operatorname{cl} V(x) \subset X \setminus V(F) \subset X \setminus F = U(x)$.

Conversely, if the condition be satisfied, $x \in Y$, $F \in co\tau_i$ and $x \in F$. Then $x \in U(x) = X \setminus F \in \tau_i$ and by condition, there is $V(x) \in \tau_i'$ such that $\tau_i \operatorname{cl} V(x) \subset U(x)$. Hence, we have

$$F = X \setminus U(x) \subset X \setminus \tau_j \operatorname{cl} V(x) = V(F) \in \tau_j \qquad \dots$$

and $V(x) \cap V(F) = \emptyset$.

(iii) By using (1.2.3) of Definition (1.2.5), taking into account that $x \in Y$, the P₃ (iii) following.

Hence, Y is (i, j)-superregular in X if and only if X is (i, j)-regular at each point of Y.

We know that a TsS (Y, τ') of a TS (X, τ) is WS-regular (WS superregular) in X if for $x \in Y$, $F \in co\tau$ and $x \in F$ there are disjoint sets $U \in \tau'$, $V \in \tau$ such that $x \in U$ and $F \cap Y \subset V$ ($F \subset V$).

Definition (i- j) regular

Let (Y, τ_1, τ_2) be a BsS of a BS (X, τ_1, τ_2) . The point-wise as follow :

i is (i, j)-regular in X from inside if every *i*-closed in X BsS of Y is (i, j)- regular.

ii Y is (i, j)-internally regular in X if for $x \in Y$, $F \in co\tau_i$, $F \subset Y$ and $x \in F$ there are disjoint sets $U \in \tau_i$, $V \in \tau_j$ such that $x \in U$ and $F \subset V$.

iii X is (i, j)-regular on Y if for each set $F \in co\tau_i$, *i*- concentrated on $Y (F \subset \tau_i cl(F \cap Y))$, and each point $x \in Y \setminus F$ there are disjoint sets $U \in \tau_i$, $V \in \tau_j$ such that $x \in U$ and $F \subset V$.

iv X is (i, j)-strongly regular on Y if for each $F \in co\tau_i$, *i*concentrated on Y, and each point $x \in X \setminus F$ there are disjoint sets $U \in \tau_i$, $V \in \tau_j$ such that $x \in U$ and $F \subset V$.

Theorem

Let $(\mathbf{Y}, \tau_1, \tau_2)$ be a BsS of a BS (X, τ_1, τ_2) . Then

- i. If Y is (i, j)-regular, then Y is (i, j)-regular from inside in X and so, in every larger BS.
- ii. If Y is (i, j)-internally regular in X, then Y is (i, j)-regular in X from inside.

Proof

(i) The proof condition (i) is trivial since if Y is (i, j)-regular, then any BsS of Y is also (i, j)- regular.

(ii) Let $F \in co\tau_i$, $F \subset Y$ and let us prove that F, τ''_1 , τ''_2 is (i, j)-regular. If $x \in F$, $\Phi \in co\tau_i''$, $x \in \Phi$, then $x \in Y$ and $\Phi \in co\tau_i$ as $F \in co\tau_i$. Since $x \in Y$, $\Phi \subset Y$, $\Phi \in co\tau_i$, $x \in \Phi$ and Y is (i, j) internally regular in X, there are $U' \in \tau_i$, $V' \in \tau_j$ such that $x \in U'$,

 $\Phi \subset V'$ and $U' \cap V' = \emptyset$. Let $U = U' \cap F$, $V = V' \cap F$. Then $U \in \tau_i''$, $V \in \tau_j''$, $x \in U$, $\Phi \subset U$ and $U \cap V = \emptyset$. Thus (F, τ_1'', τ_2'') is (i, j)-regular.

We find that a real-valued function $f: (X, \tau_1, \tau_2) \rightarrow (I, \omega')$ is Y - (i, j) - 1.u.s.c. if it is (i, j) - 1.u.s.c. at each point $y \in Y$, where (Y, τ'_1, τ'_2) is a BsS of a BS (X, τ_1, τ_2) .

Definition (i-j) almost completely regular

Let (Y, τ_1, τ_2) be a BsS of a BS (X, τ_1, τ_2) . Then

i. Y is (i,j)-almost completely regular in X if for each point $x \in Y$ and each $F \in \operatorname{co} \tau'_{i}, x \in F$ set, there is a Y -(j, i)-l.u.s.c. function f: $(X, \tau_1, \tau_2) \to (I, \omega)$ such that f(x)=0 and $f(F) \subset \{1\}$.

- ii. *Y* is (i, j)-completely regular in *X* if for each point $x \in Y$ and each set $F \in co\tau_i$, $x \in F$, there is a (j, i)-l.u.s.c. function $f : (X, \tau_1, \tau_2)$ $\rightarrow (I, \omega)$ such that f(x) = 0 and $f(F \cap Y) \subset \{1\}$.
- iii. *Y* is (i, j)-strongly completely regular in *X* if for each point $x \in Y$ and each set $F \in co\tau_i$, $x \in F$, there is a (j, i)-l.u.s.c. function $f : (X, \tau_1, \tau_2) \to (I, \omega)$ such that f(x)=0 and $f(F) \subset \{1\}$.

Therefore, Y is (i, j)-strongly completely regular in $X \Rightarrow Y$ is (i, j)completely regular in $X \Rightarrow Y$ is (i, j)-almost completely regular in X.

Theorem

A BsS (Y, τ'_1, τ'_2) of a BS (X, τ_1, τ_2) is (i, j)- almost completely regular in X if and only if for each point $x \in Y$ and any set $U \in \tau_i$, $x \in U$ there is a Y -(i, j)-l.u.s.c. function $g : (X, \tau_1, \tau_2) \to (I, \omega)$ such that g(x) = 1and $g(X \setminus U) \subset \{0\}$.

Proof

If $P = X \setminus U$, then $P \in co\tau_i$ and $F = P \cap Y \in co\tau_i'$. Since $x \in F$ and Y is (*i*, *j*)-almost completely regular, there is a $Y \cdot (j, i)$ -l.u.s.c. function f: $(X, \tau_1, \tau_2) \rightarrow (I, \omega)$ such that f(x) = 0 and $f(F) \subset \{1\}$. If g' = 1 - f, then g': $(X, \tau_1, \tau_2) \rightarrow (I, \omega)$ is $Y \cdot (i, j)$ -l.u.s.c., g'(x) = 1 and $g'(F) \subset \{0\}$. Let g(x) = g'(x) at each point $x \in U$ and g(x) = 0 at each point $x \in P = X \setminus U$. Then $g : (X, \tau_1, \tau_2) \rightarrow (I, \omega)$ is $Y \cdot (i, j)$ -l.u.s.c., g(x) = 1 and $g(X \setminus U) \subset \{0\}$.

Conversely, if the condition be satisfied and $x \in Y$, $F \in co\tau_i'$, $x \in F$. Then $x \in \tau_i clF = P \in co\tau_i$ and so $x \in U = X \setminus P$. Hence, by using the given condition, there is a Y - (i,j) - 1.u.s.c. function $f : (X, \tau_1, \tau_2) \rightarrow (I, \omega)$ such that f(x) = 1 and $f(X \setminus U) \subset \{0\}$. Which implies g = 1 - f is Y - (j, i) l.u.s.c., g(x) = 0 and $g(F) \subset g(P) = 1 - f(P) = 1 - f(X \setminus U) = \{1\}, \quad \dots$

that is, Y is (i, j)-almost completely regular in X. Hence, the theorem is proved.

Definition (p-quasi normal)

Let (Y, τ_1', τ_2') be a BsS of a BS (X, τ_1, τ_2) . Then

- i. Y is p-quasi normal in X if for each pair of disjoint sets $A \in co\tau_1$, $B \in co\tau_2$ there are disjoint sets $U \in \tau'_2$, $V \in \tau'_1$ such that $A \cap Y \subset U$ and $B \cap Y \subset V$.
- ii. Y is p-normal in X if for each pair of disjoint sets $A \in co\tau_1$, $B \in co\tau_2$ there are disjoint sets $U \in \tau_2$, $V \in \tau_1$ such that $A \cap Y \subset U$ and $B \cap Y \subset V$.
- iii. Y is p-strongly normal in X if for each pair of disjoint sets $A \in co \tau'_1$, $B \in co \tau'_2$ there are disjoint sets $U \in \tau_2$, $V \in \tau_1$ such that $A \subset U$ and $B \subset V$.
- iv. Y is (i, j)-supernormal in X if for each pair of disjoint sets $A \in co\tau_i'$, $B \in co\tau_j$ there are disjoint sets $U \in \tau_j$, $V \in \tau_i$ such that $A \subset U$ and $B \subset V$.
- v. Y is (i, j)-WS-normal in X if for each pair of disjoint sets $A \in co\tau_i'$, $B \in co\tau_j$ there are disjoint sets $U \in \tau_j'$, $V \in \tau_i$ such that $A \subset U$ and $B \cap Y \subset V$.
- vi. Y is (i, j)-WS-supernormal in X if for each pair of disjoint sets A $\in \operatorname{co}\tau_i', B \in \operatorname{co}\tau_j$ there are disjoint sets $U \in \tau_j', V \in \tau_i$ such that $A \subset U$ and $B \subset V$.

In general, the *p*-normality of (Y, τ_1, τ_2) in (X, τ_1, τ_2) does not imply the *p*-normality of (Y, τ_1, τ_2) . Nevertheless, if (Y, τ_1, τ_2) is *p*-normal in a R-

p-T₁ BS (X, τ_1, τ_2) , then (Y, τ'_1, τ'_2) is p-regular. Indeed, let $x \in Y$, $F \in co \tau'_i$ and $x \in F$. Then $x \in \tau_i$ clF and by condition there are disjoint sets $U(x) \in \tau_i$ and $U(\tau_i \text{ cl}F) \in \tau_j$. Clearly, $U'(x) = U(x) \cap Y \in \tau'_i$ and $U'(F) = U(\tau_i \text{ cl}F) \cap Y \in \tau_j'$ are also disjoint, and hence, (Y, τ'_1, τ'_2) is p-regular.

Theorem

Let $(\mathbf{Y}, \tau_1, \tau_2)$ be a BsS of a BS (X, τ_1, τ_2) . Then

i Y is p-strongly normal in X if and only if for each set $F \in \operatorname{co} \tau'_1$ $F \in \operatorname{co} \tau'_2$ and any neighbourhood $U'(F) \in \tau'_2$ ($U'(F) \in \tau'_1$) there is a neighborhood $V(F) \in \tau_2$ ($V(F) \in \tau_1$) such that $\tau_1 \operatorname{cl} V(F) \cap Y \subset U'(F)$ ($\tau_2 \operatorname{cl} V(F) \cap Y \subset U'(F)$).

ii Y is (i, j)-WS-supernormal in X if and only if for each set $F \in co\tau_i$ and any neighborhood $U(F) \in \tau_j$ there is a neighborhood $V(F) \in \tau_j$ such that $\tau_i \operatorname{cl} V(F) \subset U(F)$.

iii Y is (i,j)-supernormal in X if and only if for each set $F \in co\tau_i'$ and any neighborhood $U(F) \in \tau_j$ there is a neighborhood $V(F) \in \tau_j$ such that $\tau_i \operatorname{cl} V(F) \subset U(F)$.

Proof

(i) Let, first, Y be p-strongly normal in X, $F \in \text{co } \tau'_1$ and U'(F) $\in \tau'_2$. Then $\Phi = (X \setminus U(F)) \cap Y$, where $U(F) \in \tau_i$, $U(F) \cap Y = U'(F)$, $\phi \in \text{co} \tau'_2$ and $F \cap$, $\phi \in \text{co } \tau'_2$ and $F \cap \phi = \emptyset$. Hence there are $V(F) \in \tau_2$, V(Φ) $\in \tau_1$ such that $\tau_1 \text{ cl} V(F) \cap V(\Phi) = \emptyset$ and so $V(F) \subset \tau_1 \text{ cl} V(F) \subset X$ $\setminus V(\Phi) \subset X \setminus \Phi = U(F) \cup (X \setminus Y)$.

Therefore, $\tau_1 \operatorname{cl} V(F) \cap Y \subset U'(F)$.

Conversely, let the condition be satisfied, $A \in \operatorname{co} \tau'_1$, $B \in \operatorname{co} \tau'_2$ and $A \cap B = \emptyset$. Then $A \subset Y \setminus B = U'(A) \in \tau'_2$ and by condition there is

 $V(A) \in \tau_2$ such that $\tau_1 \operatorname{cl} V(A) \cap Y \subset U'(A)$. Hence $X \setminus U'(A) \subset X \setminus (\tau_1 \operatorname{cl} V(A) \cap Y) = (X \setminus \tau_1 \operatorname{cl} V(A)) \cup (X \setminus Y)$ and so $(X \setminus U'(A)) \cap Y \subset X \setminus \tau_1 \operatorname{cl} V(A)$, i.e., $B = Y \setminus U'(A) \subset (X \setminus \tau_1 \operatorname{cl} V(A)) = V(B) \in \tau_1$ and $V(A) \cap V(B) = \emptyset$.

(ii) Let, first, Y be (i, j)-WS-supernormal in X, $A \in \operatorname{co}\tau_i$ and $U(A) \in \tau_j$. Then $A \cap B = \emptyset$, where $B = X \setminus U(A) \in \operatorname{co}\tau_j$. Hence there are $V(A) \in \tau_j$, $V(B) \in \tau_i$ such that $\tau_i \operatorname{cl} V(A) \cap V(B) = \emptyset$ and thus

 $V(A) \subset \tau_i \operatorname{cl} V(A) \subset X \setminus V(B) \subset X \setminus B = U(A) \quad \dots (3.4)$

Conversely, let the condition be satisfied, $A \in \operatorname{co} \tau'_i$, $B \in \operatorname{co} \tau'_j$ and $A \cap B = \emptyset$. Then $A \subset U(A) = X \setminus B \in \tau_j$. Hence, by condition, there is $V(A) \in \tau'_j$ such that $\tau_i \operatorname{cl} V(A) \subset U(A)$. Therefore,

$$B = X \setminus U(A) \subset X \setminus \tau_i \operatorname{cl} V(A) = V(B) \in \tau_i \text{ and } V(A) \cap V(B) = \emptyset.$$

Now, the topological version of (i, j)-strong normality, and the topological versions of (i, j) WS-supernormality and (i, j)-supernormality. Hence, theorem is proved.

<u>References</u>

F. AL BIAC, N.J. KALTON	Topics in Banach space theory Springer, New York
(2006)	
Ronald G. Douglas (1972))	Pairwise almost continuous map and weakly con-
	tinuous map in bitopological spaces, Bull. Calcutta
	Math. Soc., 74, 195–205.

Reilly, I.L., (1972)	Banach Algebra Techniques in Operator Theory" Academic Press New York & London [New York,
Mukherjee, M.N., (1982)	On pairwise almost compactness and pairwise H- closedness in a bitopologicla space, Ann. Soc. Sci. Bruxelles, T. 96, 2, 98–106.
D. Chen, (2005)	The parametrization reduction of soft sets and its applications, Comput. Math. Appl. 49 757-763.
Dogan Cokes (2005)	H. Journal of Math & State V 3449 (101-119)